Synthesis and N M R studies of key intermediates to a new class of β-lactam: the trinems

C arla M archioro,* G iorgio Pentassuglia,* A lcide Perboni and D aniele D onati

Glaxo W ellcome S.p.A., M edicines Research Centre, via Fleming 4, 37135 Verona, Italy

An efficient synthesis of the four isomeric epoxides $4 a-d$, key compounds to the trinem ring system, starting from ($3 \mathrm{R}, 4 \mathrm{R}, 1^{\prime} \mathrm{R}$)-(+)-4-acetoxy-3-[1'-(tert-butyldimethylsilyloxy)ethyl]azetidin-2-one 6 a is described. All the intermediates have been characterized by means of NMR techniques.

β-L actam antibiotics are important antibacterial agents because of their high potency and broad spectrum of activity usually accompanied by low levels of toxicity. ${ }^{1}$ Because of this, research over recent years has been focused on discovering novel β lactams from natural sources (e.g. cephalosporins, monobactams, carbapenems), by semisynthesis of new derivatives from naturally occurring sources (e.g. penicillins, cephalosporins, carbapenems) and by design of novel classes of compounds (e.g. penems, carbacephalosporins, oxacephalosporins). ${ }^{2}$ Recently a new family of totally synthetic β-lactam antibiotics, the trinems (formerly referred to as tribactams, Fig. $1,1)$ has been discovered in our laboratories. ${ }^{3}$ These com-

1

3a $\mathrm{R}=\mathrm{Na}$
$\begin{aligned} 3 \mathrm{a} R & =\mathrm{Na} \\ 3 \mathrm{R} & =-\mathrm{CH}(\mathrm{Me}) \mathrm{OCO}_{2} \mathrm{C}_{6} \mathrm{H}_{11}\end{aligned}$
Fig. 1
pounds possessed both very broad antibacterial activity and high stability to most clinically relevant β-lactamases. F rom the structural point of view, the main feature of the members of this class is the presence of a third ring, C, fused to the bicyclic nucleus of carbapenems; this can be 5-7 membered, carbocyclic or a heteroatom-containing ring. Our research activities have been particularly focused on exploiting derivatives where C is a 6 -membered carbocyclic ring substituted at C-4 (Fig. 1, 2). In particular sanfetrinem (GV104326) 3a and its metabolically labile ester GV118819 '3b' have shown a particularly good biological profile and have been selected for development studies. ${ }^{4}$

As both antibacterial activity and biological stability of trinems $\mathbf{2}$ were found to be dependent on the absolute configuration at the stereogenic centres at C-4 and C-8, the identification of efficient and stereoselective routes to these compounds would allow us to synthesize more efficiently other derivatives. On this basis, we identified the isomeric epoxides 4a-d (Fig. 2) as advanced key intermediates.

Compounds 4a-d can react with nucleophiles to give α substituted cyclohexanols 5 (where, for example, $\mathbf{5 a}$ and $\mathbf{5 b}$ represent the epoxide ring opening of 4a with methylamine and methanol, respectively) which could be converted into 4 substituted trinems 2 through well established procedures (for example, see Scheme 1 for compound 3a). ${ }^{3,5}$

4a

4c

5

4b

5b $\mathrm{X}=-\mathrm{OMe}$

Fig. 2

Synthesis

In early studies we succeeded in the direct cyclohexenylation of commercially available 4 -acetoxyazetidinone $6 a^{6}$ with cyclohexenyl bromide in the presence of zinc dust in anhydrous tetrahydrofuran (THF), to obtain an inseparable mixture of cyclohexenyl derivatives 7a, ${ }^{7 a}$ (Scheme 2). A 4:1 mixture of 7a:7b was also obtained through an intramolecular Sakurajtype reaction. ${ }^{70}$

In order to obtain pure isomers of $\mathbf{7 a}$ and $\mathbf{7 b}$ a less direct route was thus preferred. It has previously been demonstrated ${ }^{3 c}$ that 1-(trimethylsilyloxy)cyclohexene reacts with the 4-acetoxyazetidinone 6 a in the presence of a number of catalysts, but

Scheme 2

most preferably zinc chloride, to give a 40:60 mixture of the ketoazetidinones $8 \mathbf{a}, \mathbf{b}$ in 90% overall yield from $6 \mathbf{a}$. We were able to change the diastereoisomer ratio by changing the reaction conditions. Protection of $6 \mathbf{a}$ at the lactam nitrogen with a trimethylsilyl group gave $\mathbf{6 b}$ that was reacted with 1(trimethylsilyloxy)cyclohexene in the presence of tin(iv) chloride to give, after work-up and removal of the trimethylsilyl group, an 80:20 mixture of isomers $\mathbf{8 a}, \mathbf{b}$ in 95% overall yield from 6a (Scheme 2). The ketoazetidinone 8a could be obtained in 55% yield after crystallization of the crude reaction mixture.

Compounds $\mathbf{8 a}$ and $\mathbf{8 b}$ were then separately transformed into the tosylhydrazones $\mathbf{9 a}$ and $\mathbf{9 b}$ in good yield (Scheme 3). It is

Scheme 3
worth noting that only the E isomer of the hydrazones could be isolated, although traces of the Z isomers could be detected by careful NMR analysis of the reaction mixtures.

Both hydrazones $9 \mathbf{a}$ and $\mathbf{9 b}$ were successfully transformed into cyclohexenyl derivatives in 64 and 70% yield, respectively, according to the well established Shapiro procedure. ${ }^{8}$ Epoxidation of 7a (3-chloroperoxybenzoic acid, dichloromethane, $23^{\circ} \mathrm{C}$) gave an $80: 20$ mixture of isomers $4 a$ and $4 b$ that could be easily separated by flash chromatography (for the structural assignment of epoxides $\mathbf{4 a}$ and $\mathbf{4 b}$ see next paragraph). The
same reaction conditions were used for $\mathbf{7 b}$ and, in this case, a $20: 80$ mixture of epoxides $\mathbf{4 c}$ and $\mathbf{4 d}$ was isolated (Scheme 4).

In order to explain this stereochemical outcome we hypothesized the formation of a hydrogen bond between the lactam hydrogen and the peracid as reported by Roush ${ }^{9}$ and by K ocovský. ${ }^{10}$
This was indirectly supported through the epoxidation of the N -tert-butyldimethylsilyl derivative 10a (Scheme 4). Thus, reaction of 10a with 3-chloroperoxybenzoic acid gave a mixture of the epoxides 11a and 11b in a 6:94 ratio and 60\% yield. The absolute configurations at the stereogenic centres for 11b were established by conversion into $\mathbf{4 b}$ after removal of the silyl protecting group.

All the epoxides were found to undergo regioselective ring opening with a number of nucleophiles, such as methanol and methylamine, allowing the introduction of a variety of substituents on the trinem structure In the case of the epoxide $\mathbf{4 a}$ the regiochemistry of the reaction is consistent ${ }^{11}$ with a preference for a ring-opening to give a trans-diaxial product such as 5; for the epoxide $\mathbf{4 b}$, however, the substituent at $\mathrm{C}-\mathbf{3}^{\prime}$, for steric reasons, directs nucleophile attack to $\mathrm{C}-1^{\prime}$.
Compound 4a has been most widely studied because its reaction with methanol allowed the stereoselective introduction of a methoxy group and gave an intermediate that could be easily transformed into sanfetrinem and GV118819. In the same way ${ }^{12,3 \mathrm{c}}$ we were able to open regioselectively the epoxide 4a with amines, alcohols and thiols in order to evaluate the microbiological profile of the corresponding 4-substituted trinems.

NM R Studies

The complete proton and carbon assignments for compounds $\mathbf{4 a - d}, \mathbf{7 a - b}, \mathbf{8 a - b}$ and $9 \mathrm{a}-\mathrm{b}$ were relatively straightforward and were made with the combined results of several experiments: ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ NMR correlation (gH MQC , gHSQC) and gCOSY; in addition, the structures have been investigated by means of NOE techniques. The reference numbering is given in Fig . 3.
The description of the complete proton and carbon assignments for compound $\mathbf{4 a}$ serves as an example. The ${ }^{1} \mathrm{H}$ NMR signal assignments were made first via the sequential correlations observed from the gCOSY spectra. The protons $\mathrm{H}-3$ and $\mathrm{H}-4(\delta 3.77, \mathrm{dd}, \mathrm{J} 2.4,6.8 \mathrm{~Hz}$) showed a strong correlation in the

4

Fig. 3
gCOSY spectrum, as expected. Proton H-4 was also coupled to $\mathrm{H}-3^{\prime}(\delta 2.0)$ and this one was correlated to $\mathrm{H}-2^{\prime}$ and both the H-4' protons: from these all of the aliphatic protons were readily identified. The axial and equatorial protons were assigned through their coupling constants and chemical shifts.
${ }^{13} \mathrm{C}$ NMR signals were then ascribed through gHMQC (gradient heteronuclear multiple quantum correlation) and gH SQC (gradient heteronuclear singlequantum correlation).

The stereochemistries in the series 4a-d were studied by means of NOE experiments. All the observed NOEs, together with a suggestion for the solution conformation are reported in Fig. 4: in the case of compound 4a the configuration at C-3' was confirmed from the presence of NOE enhancements between $\mathrm{H}-3$ and $\mathrm{H}-3^{\prime}$ and between $\mathrm{H}-4$ and $\mathrm{H}-2^{\prime}$; these findings, together with the same enhancements after irradiation of $\mathrm{H}-3$, suggest a rotation around the $\mathrm{C}(4)-\mathrm{C}\left(3^{\prime}\right)$ bond and the configurations at $\mathrm{H}-2^{\prime}$ and $\mathrm{H}-1^{\prime}$ were also based upon the comparison of NOE data of compounds $4 \mathbf{a}$ and $\mathbf{4 b}$.

The stereochemistries were also confirmed by the chemical transformation of $\mathbf{4 a}$ to compound 3a, as reported in Scheme 1.
The relative configuration at $\mathrm{C}-2^{\prime}$ in compounds 8 a and $\mathbf{8 b}$ was unequivocally established through conversion into com-

Scheme 5
pounds related to the structure ($\mathbf{2 a}$ and $\mathbf{2 b}$, where $\mathrm{X}=\mathrm{H}$, Scheme 5) ${ }^{3}{ }^{3 a}$ and relative NOE studies while the stereochemistries at $\mathrm{C}-3$ and $\mathrm{C}-4$ are derived from the coupling constant value, i.e. J $3,4=2.2 \mathrm{~Hz} .^{13}$

[^0]

4a

4c

4d

Fig. 4

2a

2b

Fig. 5

$9 a$
Fig. 6

In both isomers, saturation of H-8 results in a strong N OE enhancement in the signal of H-9 in compound 2 a and in the case of the epimer, $\mathbf{2 b}$, in a strong enhancement in the $\mathrm{H}-10$ signal in addition to a small effect on the $\mathrm{H}-9$ signal (Fig. 5).

The two isomers $\mathbf{8 a}$ and $\mathbf{8 b}$ also show significant differences in their chemical shifts. Comparing the proton chemical shifts, characteristic differences can be observed between the $\mathrm{H}-4$ signals of the two isomeric compounds: in the case of 8 a , the signal is at about 4.1 ppm while in compound 8 b the signal is at about 3.6 ppm . This trend in the chemical shifts difference can be observed also in compounds $9 \mathbf{a}$ and $9 \mathbf{b}$: respectively, 4.0 and 3.6 for their H-4 chemical shifts. The configuration of the double bond of both compounds is derived from the NOE experiments: in the case of 9a saturation of the lower field aromatic protons results in enhancements in $\mathrm{H}-1$ and $\mathrm{H}-4$, saturation of the upper field aromatic protons in an enhancement of the $H_{\text {ee }}{ }^{-6}$ signal, irradiation of $\mathrm{H}-4$ results in an enhancement of $\mathrm{H}-3, \mathrm{H}-1, \mathrm{H}-2^{\prime}$ and in the lower field aromatic protons. Irradiation of $\mathrm{H}-3$ results in an enhancement of $\mathrm{H}-2^{\prime}, \mathrm{H}_{\mathrm{eq}}{ }^{-3^{\prime}}$, $\mathrm{H}-5$ and $\mathrm{H}-4$ and a smaller effect on the aromatic region. The most relevant result is from saturation of $\mathrm{H}_{\mathrm{eq}}-6^{\prime}$: an NOE enhancement is evident on the NH of the Ts group, $\mathrm{H}_{\text {ea }} \mathbf{- 4}^{\prime}$ and $\mathrm{H}_{\mathrm{eq}}-5^{\prime}$; irradiation of $\mathrm{H}-2^{\prime}$ gives enhancement on $\mathrm{H}-3, \mathrm{H}-4$ and $\mathrm{H}_{\mathrm{eq}}-5^{\prime}$ and in the upper field aromatic region. From all these results, the structure in Fig. 6 is derived.
M oving to the compounds 7a and 7b there are no significant differences in the chemical-shift values, and the coupling constant ${ }_{4,3}$ value (7.4 Hz in 7 a and 8.6 Hz in 7 b), suggests a close steric similarity between the two compounds.

Experimental

All reactions were performed in oven-dried glassware under a positive pressure of nitrogen. All reagents were purchased from commercial sources and used as received, unless otherwise indicated. Solvents were distilled under a nitrogen atmosphere from sodium benzophenone ketyl (THF), CaH_{2} (triethylamine, DM F) or $\mathrm{P}_{2} \mathrm{O}_{5}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Zinc chloride, ZnCl_{2}, was fused in vacuo before use. A nalytical thin-layer chromatography (TLC) was performed on E . M erck silica gel $60 \mathrm{~F}_{254}$ plates (0.25 mm). Compounds were visualized by dipping in a phosphomolybdic acid solution followed by heating. Flash chromatography was performed on E. M erck silica gel (230-400 mesh). ${ }^{14} \mathrm{M}$ elting points are uncorrected and were determined with a capillary melting point apparatus. IR spectra were recorded in CDCl_{3} solution unless otherwise indicated and are reported in wavenumbers (cm^{-1}). ${ }^{1} \mathrm{H} N \mathrm{MR}$ spectra were recorded at 500 M Hz , ${ }^{13} \mathrm{C}$ NMR were recorded at 100.57 or at 75.43 M Hz : all the spectra were collected in CDCl_{3} at $25^{\circ} \mathrm{C}$; J values are given in Hz . In the ${ }^{1} \mathrm{H} N M \mathrm{R}$ spectra, chemical shifts are reported in ppm with respect to residual CHCl_{3} at 7.26 downfield from TM S while in the carbon N M R spectra, the central signal $(\delta 77.0)^{13} \mathrm{C}$ resonance of CDCl_{3} was used as internal reference. NMR assignments are assisted by NOE and 2D-techniques. For the numbering systems used in the N M R assignments, see Fig. 3.
M ass spectra were recorded in FAB (70 eV) mode using 3nitrobenzyl alcohol as matrix. All optical rotations [α] values were obtained in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, at the sodium D line, at $20^{\circ} \mathrm{C}$ and are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$.

(3S,4R)-3-[(1R)-1-(tert-B utyldimethylsilyloxy)ethyl]-4-[(2'R)-1^{\prime}-oxocyclohexan-2'-yl]azetidin-2-one 8a and (3S,4R)-3-[(1R)-1-(tert-butyldimethylsilyloxy)ethyl]-4-[(2'S)-1'-oxocyclohexan-2'-

 yl Jazetidin-2-one 8bM ethod 1. To a solution of 4-acetoxyazetidinone 6a $(2.85 \mathrm{~g}$, 9.91 mmol) and zinc chloride ($2.50 \mathrm{~g}, 18.34 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added dropwise a solution of 1 (trimethylsilyloxy)cyclohexene ($2.12 \mathrm{ml}, 10.90 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$. The resulting reaction mixture was stirred for 3 h after which further 1-(trimethylsilyloxy)cyclohexene (0.25 ml , $1.28 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ was added to it and stirring was continued for 1 h . The solution was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The product was purified by flash chromatography eluting with a $7: 3$ mixture of cyclohexane and ethyl acetate to afford $8 \mathrm{a}(1.18 \mathrm{~g})$ and $8 \mathrm{~b}(1.77 \mathrm{~g})$ (ratio $8 \mathbf{a}: \mathbf{8 b}=40: 60$, total yield 90%).

Compound 8a: white solid; mp $105-107^{\circ} \mathrm{C}$; $[a]+33.9$ (c 0.54) (Found: C, 62.62; H, 9.54; N, 4.22. $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{Si}$ requires C , 62.71; H, 9.62; N, 4.30\%); $v_{\text {max }} / \mathrm{cm}^{-1} 3418 \mathrm{~s}, 1757 \mathrm{~s}$ and $1707 \mathrm{~s} ; \delta_{\mathrm{H}}$ $0.06\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e} \mathrm{e}_{2} \mathrm{Si}\right], 0.08\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e} \mathrm{e}_{2} \mathrm{Si}\right], 0.87$ [9 $\left.\mathrm{H}, \mathrm{s},\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{Me}_{2} \mathrm{Si}\right], 1.24\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5,5-\mathrm{M} \mathrm{e}\right.$), $1.69\left(3 \mathrm{H}, \mathrm{m}, 3^{\prime}-\right.$ $\left.H_{\text {ax }} 5^{\prime}-\mathrm{H}_{\text {ax }}, 4^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 1.96\left(1 \mathrm{H}, m, 4^{\prime}-\mathrm{H}_{\text {eq }}\right), 2.15\left(2 \mathrm{H}, m, 5^{\prime}-\mathrm{H}_{\text {eq }}\right.$ and $\left.3^{\prime}-H_{\text {eq }}\right), 2.36\left(1 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{\text {ax }}\right), 2.43\left(1 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{\text {eq }}\right), 2.56$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{a}^{\prime}-\mathrm{H}\right), 2.88(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.3$ and $5.5,3-\mathrm{H}), 4.10(1 \mathrm{H}, \mathrm{dd}$, J 2.3 and $3.5,4-\mathrm{H}), 4.19(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and $5.75(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, NH) ; $\delta_{\mathrm{c}}(100.57 \mathrm{M} \mathrm{Hz})-4.95,-4.20\left[2 \times\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e}_{2} \mathrm{Si}\right], 17.97$ [($\left.\left.\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e}_{2} \mathrm{Si}\right], 22.55$ (C-6), 24.66 (C-4'), 25.77 [(M e $\left.\mathrm{C}_{3} \mathrm{C}\right)$ $\mathrm{M} \mathrm{e}_{2} \mathrm{Si}$], 27.64 ($\mathrm{C}-5^{\prime}$), 27.76 ($\mathrm{C}-3^{\prime}$), 42.37 ($\mathrm{C}-6^{\prime}$), 49.35 ($\mathrm{C}-2^{\prime}$), 52.59 (C-4), 60.58 (C-3), 65.97 (C-5), 168.58 (C-2) and 211.57 (C-1') [Found (HRMS): m/z 326.215980. Calc. for ($\mathrm{M} \mathrm{H}^{+}$): $326.215148] ; \mathrm{m} / \mathrm{z} 326\left(\mathrm{M} \mathrm{H}^{+}, 28 \%\right), 310$ (20) and 268 (100).

Compound 8b: white solid; mp 107-109 ${ }^{\circ} \mathrm{C}$; $[a]+40.1$ (c 0.57) (Found: C, 62.54; $\mathrm{H}, 9.72$; $\mathrm{N}, 4.24 . \mathrm{C}_{17} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{Si}$ requires C , $62.71 ; \mathrm{H}, 9.62 ; \mathrm{N}, 4.30 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 3423 \mathrm{~s}, 1755 \mathrm{~s}$ and $1707 \mathrm{~s} ; \delta_{\mathrm{H}}$ $0.07\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e} \mathrm{e}_{2} \mathrm{Si}\right], 0.08\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e} \mathrm{e}_{2} \mathrm{Si}\right], 0.86[9$ $\mathrm{H}, \mathrm{s},\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{Me}_{2} \mathrm{Si}$], $1.22\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5,5-\mathrm{Me}\right.$), $1.42\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\right.$ $\left.\mathrm{H}_{\mathrm{ax}}\right), 1.65\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{ax}}\right.$ and $\left.5^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 1.95\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{eq}}\right)$, $2.10\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{\text {eq }}\right), 2.16\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\text {eq }}\right), 2.33\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}^{\mathrm{eq}}\right)$, $2.40\left(1 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 2.42\left(1 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{\text {eq }}\right), 2.70(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$, $3.63(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.18$ and $9.92,4-\mathrm{H}), 4.18(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and 6.12
$(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}}(75.43 \mathrm{MHz})-4.86,-4.51\left[2 \times\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right)-\right.$ $\left.\mathrm{M} \mathrm{e}_{2} \mathrm{Si}\right], 17.79$ [(M e $\left.\left.{ }_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e}_{2} \mathrm{Si}\right], 22.78$ (C-6), 24.60 (C-4'), 25.65 [($\left.\left.\mathrm{M}_{3} \mathrm{C}\right) \mathrm{M}_{2} \mathrm{Si}\right]$, 27.46 ($\mathrm{C}-5^{\prime}$), 31.07 (C-3'), 41.89 (C-6'), 50.77 (C-2'), 55.57 (C-4), 63.15 (C-3), 65.51 (C-5), 167.88 (C-2) and 212.05 (C-1') [Found (HRMS): m/z 326.21344. Calc. for ($\mathrm{M} \mathrm{H}^{+}$): 326.215148]; m/z $326\left(\mathrm{M} \mathrm{H}^{+}, 10 \%\right), 310$ (14), 268 (84) and 126 (100).

M ethod 2. To a solution of 4-acetoxyazetidinone 6a (45.2 g , 157.0 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(400 \mathrm{ml})$ were added at $0^{\circ} \mathrm{C}$ triethylamine ($33 \mathrm{ml}, 237 \mathrm{mmol}$) and trimethylsilyl chloride ($25 \mathrm{ml}, 197$ $\mathrm{mmol})$. The resulting reaction mixture was stirred at room temperature for 1 h after which it was washed with precooled water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to give $\mathbf{6 b}(55 \mathrm{~g}, 97 \%)$ which was used without further purification; $\delta_{\mathrm{H}} 0.02[6 \mathrm{H}, \mathrm{S}$, $\left.\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e}_{2} \mathrm{Si}\right], 0.22\left(9 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e} \mathrm{e}_{3} \mathrm{Si}\right), 0.8\left[9 \mathrm{H}, \mathrm{s},\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e} \mathrm{e}_{2} \mathrm{Si}\right]$, 1.18 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.7,5-\mathrm{Me}$), 2.04 ($3 \mathrm{H}, \mathrm{s}, ~ \mathrm{OCOM}$ e), $3.08(1 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}), 4.15(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and $6.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.0,4-\mathrm{H})$.
To a vigorously stirred solution of tin(iv) chloride (20.5 ml , 175 mmol) in dry acetonitrile (250 ml), cooled at $-40^{\circ} \mathrm{C}$ was added dropwise a solution of $\mathbf{6 b}(55 \mathrm{~g}, 152 \mathrm{mmol})$ in dry acetonitrile (150 ml). During the addition the temperature was maintained $<-25^{\circ} \mathrm{C}$; a solution of 1-(trimethylsilyloxy)cyclohexene ($41 \mathrm{ml}, 210 \mathrm{mmol}$) was then rapidly added to the reaction mixture which was then stirred for 1 h . A fter this it was diluted with diethyl ether, washed with pre-cooled 10% aqueous NaOH , dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was dissolved in methanol (300 ml) and stirred for 30 min in the presence of silica gel (30 g) and triethylamine (1 ml). The silica gel was filtered off and the filtrate evaporated to give $\mathbf{8 a}$ and $\mathbf{8 b}$ ($48 \mathrm{~g}, 95 \%$) (ratio $8 \mathrm{a}: 8 \mathrm{~b}=80: 20$). The mixture was recrystallized from light petroleum to give pure 8 a ($28 \mathrm{~g}, 55 \%$).
($3 \mathrm{~S}, 4 \mathrm{R}$)-3-[(1R)-1-(tert-B utyldimethylsilyloxy)ethyl]-4-\{[(2'R)1^{\prime} '(4-methylphenylsulfono) hydrazonojcyclohexan-2'- yl\} azetidin-2-one 9a
To a solution of $8 \mathbf{a}(1 \mathrm{~g}, 3.0 \mathrm{mmol})$ in glacial acetic acid (30 ml) was added toluenep-sulfonylhydrazine ($0.63 \mathrm{~g}, 3.38 \mathrm{mmol}$). The resulting reaction mixture was stirred for 3 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{ml})$, neutralized with 5% aqueous NaHCO_{3}, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The product was purified by flash chromatography eluting with a 7:3 mixture of diethyl ether and light petroleum to afford 9a ($1 \mathrm{~g}, 66 \%$) as a white solid; mp $95-96{ }^{\circ} \mathrm{C} ;[a]+78.90$ (c 0.73) (Found: C, $58.17 ; \mathrm{H}, 8.10 ; \mathrm{N}, 8.24$. $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{SSi}$ requires C, 58.37; H,7.98; $\mathrm{N}, 8.51 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ 3306 s and $1755 \mathrm{~s} ; \delta_{\mathrm{H}} 0.04\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e} \mathrm{e}_{2} \mathrm{Si}\right], 0.06[3 \mathrm{H}, \mathrm{s}$, ($\mathrm{M} \mathrm{e}_{3} \mathrm{C}$) M e $\mathrm{e}_{2} \mathrm{Si}$, 0.87 [$9 \mathrm{H}, \mathrm{s},\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{E} \mathrm{e}_{2} \mathrm{Si}$], 1.04 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5$, $5-$ $\mathrm{Me}), 1.46\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 1.47\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{ax}}\right.$ and $\left.5^{\prime}-\mathrm{H}_{\mathrm{ax}}\right)$, $1.81\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\text {eq }}\right), 1.82\left(1 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 1.90\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\right.$ $\mathrm{H}_{\text {eq }}$), $1.92\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\text {eq }}\right), 2.35\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 2.45(3 \mathrm{H}, \mathrm{s}$, $5^{\prime \prime}-\mathrm{M}$ e), $2.55\left(1 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{\text {eq }}\right), 2.82(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.5$ and $5.2,3-$ H), 4.00 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.5$ and $6.5,4-\mathrm{H}$), $4.10(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.60$ (1 H, br s, NH), $7.34\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}-\mathrm{H}\right), 7.46\left(1 \mathrm{H}, \mathrm{br}\right.$ s, $\left.\mathrm{l}^{\prime \prime}-\mathrm{NH}\right)$ and $7.81\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime \prime}-\mathrm{H}\right) ; \delta_{\mathrm{c}}(100.57 \mathrm{M} \mathrm{Hz})-5.10,-4.39[2 \times$ ($\left.\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e}_{2} \mathrm{Si}$], 17.84 [($\left.\left.\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e}_{2} \mathrm{Si}\right]$, 21.52 (C-6"), 22.33 (C-6), 23.81 ($\left.\mathrm{C}-4^{\prime}\right), 25.68$ [($\left.\left.\mathrm{M} \mathrm{e} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e}_{2} \mathrm{Si}\right]$, 25.85 (C-5'), 26.31 (C-3'), 26.80 (C-6'), 46.14 (C-2'), 49.85 (C-4), 59.62 (C-3), 65.63 (C-5), 128.06 ($\mathrm{C}-3^{\prime \prime}$), 129.65 ($\mathrm{C}-4^{\prime \prime}$), 135.15 ($\mathrm{C}-2^{\prime \prime}$), 144.35 ($\mathrm{C}-5^{\prime \prime}$), 161.32 ($\mathrm{C}-\mathrm{l}^{\prime}$) and 168.54 (C-2); m/z $494\left(\mathrm{M} \mathrm{H}^{+}, 29 \%\right), 436$ (25) and 319 (100).

($3 \mathrm{~S}, 4 \mathrm{R}$)-3-[(1R)-1-(tert-B utyldimethylsilyloxy)ethyl]-4-\{[(2'S)-1'-(4-methylphenylsulfono) hydrazonolcyclohexan-2'-yl \}azetidin-

 2-one 9bFollowing the same procedure as described for the synthesis of 9a, 9b ($0.16 \mathrm{~g}, 72 \%$) was obtained from $8 \mathrm{~b}(0.15 \mathrm{~g}, 0.45 \mathrm{mmol}$); mp 187-189 ${ }^{\circ} \mathrm{C} ;[a]+67.6$ (c 0.61) (Found: C, 58.51; H, 8.05; N, 8.52. $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{SSi}$ requires C, 58.37; H, 7.98; $\mathrm{N}, 8.51 \%$); $v_{\text {max }} /$ $\mathrm{cm}^{-1} 3304 \mathrm{~s}$ and $1753 \mathrm{~s} ; \delta_{\mathrm{H}} 0.085\left[\mathrm{~s}, 3 \mathrm{H},\left(\mathrm{M} \mathrm{e} 3_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e}_{2} \mathrm{Si}\right], 0.095$ [s , $\left.3 \mathrm{H},\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e}_{2} \mathrm{Si}\right], 0.93$ [s, $\left.9 \mathrm{H},\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e}_{2} \mathrm{Si}\right], 1.19(1 \mathrm{H}, \mathrm{m}$, $\left.3^{\prime}-H_{a x}\right), 1.20(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6,5-\mathrm{Me}), 1.38\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 1.49(1$

H, m, $4^{\prime}-H_{a x}$), $1.75\left(1 \mathrm{H}, m, 6^{\prime}-H_{a x}\right), 1.84\left(1 \mathrm{H}, m, 4^{\prime}-\mathrm{H}_{\text {eq }}\right)$, $1.90\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{\text {eq }}\right), 1.96\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\text {eq }}\right), 2.09(1 \mathrm{H}, \mathrm{m}$, $\left.2^{\prime}-\mathrm{H}\right), 2.46\left(3 \mathrm{H}, \mathrm{s}, 5^{\prime \prime}-\mathrm{M} \mathrm{e}\right.$), $2.63(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.64(1 \mathrm{H}, \mathrm{m}$, $6^{\prime}-\mathrm{H}_{\text {eq }}$), $3.60(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.0$ and $9.5,4-\mathrm{H}), 4.17(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, $5.68\left(1 \mathrm{H}, \mathrm{br}\right.$ s, NH), $7.22\left(1 \mathrm{H}, \mathrm{br}\right.$ s, 1"-N H), $7.35\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}-\mathrm{H}\right)$ and $7.82\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime \prime}-\mathrm{H}\right) ; \delta_{\mathrm{c}}(100.57 \mathrm{MHz})-4.81,-4.47$ [$\left.2 \times\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e}_{2} \mathrm{Si}\right], 18.06$ [($\left.\left.\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e}_{2} \mathrm{Si}\right], 21.71$ (C-6"), 22.69 (C-6), 24.47 (C-4'), 25.54 (C-5'), 25.85 [(M e ${ }_{3} \mathrm{C}$) M e2Si], 26.57 ($\mathrm{C}-6^{\prime}$), 30.33 ($\mathrm{C}-3^{\prime}$), 49.65 ($\mathrm{C}-2^{\prime}$), 51.32 ($\mathrm{C}-4$), 62.90 ($\mathrm{C}-3$), 65.33 (C-5), 128.13 (C-3"), 129.81 (C-4"), 135.07 (C-2"), 144.74 (C-5"), 161.26 ($\mathrm{C}-\mathrm{I}^{\prime}$) and 167.84 (C-2); m/z 494 ($\mathrm{M} \mathrm{H}^{+}, 100 \%$), 436 (27) and 319 (18).
(3S,4R)-3-[(1R)-1-(tert-B utyldimethylsilyloxy)ethyl]-4-[(3'S)-cyclohex-1'-en-3'-yl Jazetidin-2-one 7a ${ }^{15}$
To a stirred solution of LDA [prepared from dry diisopropylamine (1.35 ml) and a 1.6 m solution of butyllithium in hexanes $(5.7 \mathrm{ml})$] was slowly added at $-40^{\circ} \mathrm{C}$ a solution of $9 \mathrm{a}(1.12 \mathrm{~g}$, 2.27 mmol) in dry THF (20 ml). The reaction mixture was slowly warmed to $-20^{\circ} \mathrm{C}$ and maintained at $0^{\circ} \mathrm{C}$ for 1 h . A fter this it was added to precooled 5% aqueous $\mathrm{HCl}(20 \mathrm{ml})$ and extracted with ethyl acetate $(2 \times 40 \mathrm{ml})$. The combined organic phases were washed successively with 5% aqueous NaHCO_{3} and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The product was purified by flash chromatography eluting with a $1: 1$ mixture of diethyl ether and light petroleum to afford 7 a ($0.45 \mathrm{~g}, 64 \%$) as a white solid.

(3S,4R)-3-[(1R)-1-(tert-B utyldimethylsilyloxy)ethyl]-4-[(3'R)-cyclohex-1'-en-3'-yl Jazetidin-2-one 7b

Following the same procedure as described for the synthesis of 7a, $7 \mathbf{b}(0.17 \mathrm{~g}, 70 \%)$ was obtained from $9 \mathrm{~b}(0.50 \mathrm{~g}, 1 \mathrm{mmol}) ; \mathrm{mp}$ $98-100{ }^{\circ} \mathrm{C}$; $[a]+62.8$ (c 0.67) (Found: C, 66.07; H, 10.20; N, 4.52. $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{~N} \mathrm{O}_{2}$ Si requires $\mathrm{C}, 65.95 ; \mathrm{H}, 10.11 ; \mathrm{N}, 4.53 \%$); $v_{\text {max }} /$ $\mathrm{cm}^{-1} 3418 \mathrm{~s}$ and 1755vs; $\delta_{\mathrm{H}} 0.10$ [3 H , s, ($\left.\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e} \mathrm{e}_{2} \mathrm{Si}$], 0.11 [3 $\mathrm{H}, \mathrm{s},\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e} \mathrm{e}_{2} \mathrm{Si}$, 0.90 [$9 \mathrm{H}, \mathrm{s},\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e} \mathrm{e}_{2} \mathrm{Si}$], $1.26(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $6.4,5-\mathrm{Me}$), 1.34 ($1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{ax}}$), 1.54 ($1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{\mathrm{ax}}$), 1.77 (1 $\left.H, m, 5^{\prime}-\mathrm{H}_{\text {eq }}\right), 1.83\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\text {eq }}\right), 2.00\left(2 \mathrm{H}, \mathrm{m}, 2 \times 6^{\prime}-\mathrm{H}\right)$, $2.23\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 2.83(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.46(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.1$ and 8.6, 4-H), $4.20(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.58\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.9\right.$ and $2.0,2^{\prime}-$ H), $5.85\left(1 \mathrm{H}, \mathrm{m}, \mathrm{1}^{\prime}-\mathrm{H}\right)$ and $5.91(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}}(75.43$ $\mathrm{MHz})-4.34,-3.34 \quad\left[2 \times\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e} \mathrm{e}_{2} \mathrm{Si}\right], \quad 18.07 \quad\left[\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right)-\right.$ $\left.\mathrm{M} \mathrm{e}_{2} \mathrm{Si}\right]$, 20.97 ($\mathrm{C}-5^{\prime}$), 22.87 (C-6), 24.99 (C-6'), 25.37 [(M e3 C^{2})$\left.\mathrm{M} \mathrm{e}_{2} \mathrm{Si}\right], 25.87$ (C-4'), 39.61 (C-3'), 55.12 (C-4), 62.93 (C-3), 65.33 ($\mathrm{C}-5$), 126.54 ($\mathrm{C}-1^{\prime}$), 129.76 ($\mathrm{C}-2^{\prime}$) and 169.02 ($\mathrm{C}-2$); m/z 310 ($\mathrm{M} \mathrm{H}^{+}, 20 \%$), 294 (8) and 110 (100).
(3S,4R)-3-[(1R)-1-(tert-B utyldimethylsilyloxy)ethyl]-4[(1'R , 2'S, $\mathbf{3}^{\prime} R$)-1', $\mathbf{2}^{\prime}$-epoxycyclohexan-3'-yl]azetidin-2-one 4a and ($35,4 \mathrm{R}$)-3-[(1R)-1-(tert-butyldimethylsilyloxy)ethyl]-4 [(1'S,2'R , $\mathbf{3}^{\prime}$ ')-1' ${ }^{\prime}, \mathbf{2}^{\prime}$-epoxycyclohexan- $\mathbf{3}^{\prime}$-yl]azetidin-2-one 4b To a solution of $7 \mathrm{a}(0.24 \mathrm{~g}, 0.77 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added dropwise at $0^{\circ} \mathrm{C}$ a solution of 3 -chloroperoxybenzoic acid (assay 55%; $0.3 \mathrm{~g}, 0.96 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$. The solution was warmed to room temperature, stirred for 3 h and then washed with 10% aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}, 5 \%$ aqueous NaHCO_{3} and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The product was purified by flash chromatography eluting with a $1: 1$ mixture of diethyl ether and light petroleum to afford $\mathbf{4 b}(0.05 \mathrm{~g})$ followed by an 8:2 mixture of the same solvents to afford $4 \mathrm{a}(0.13 \mathrm{~g})$ (ratio $\mathbf{4 a}: \mathbf{4 b}=80: 20$, total yield 76%).

Compound 4a: white solid; mp 134-136 ${ }^{\circ} \mathrm{C}$; [a] -35.1 (c 0.61) (Found: $\mathrm{C}, 62.99 ; \mathrm{H}, 9.61 ; \mathrm{N}, 4.19 . \mathrm{C}_{17} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{Si}$ requires C $62.71 ; \mathrm{H}, 9.62 ; \mathrm{N}, 4.30 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 3413 \mathrm{~s}$ and $1757 \mathrm{vs} ; \delta_{\mathrm{H}} 0.07$ [$\left.6 \mathrm{H}, \mathrm{s},\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e}_{2} \mathrm{Si}\right], 0.87$ [$\left.9 \mathrm{H}, \mathrm{s},\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e} \mathrm{e}_{2} \mathrm{Si}\right], 1.22(2 \mathrm{H}, \mathrm{m}$, $5^{\prime}-\mathrm{H}_{\mathrm{ax}}$ and $4^{\prime}-\mathrm{H}_{\mathrm{ax}}$), $1.26\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.0,5-\mathrm{Me}\right.$), $1.40\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\right.$ $\left.H_{\text {eq }}\right), 1.55\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\text {eq }}\right), 1.86\left(1 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{\text {ax }}\right), 1.96(1 \mathrm{H}, \mathrm{m}$, $\left.6^{\prime}-\mathrm{H}_{\text {eq }}\right), 2.00\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 3.01(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.12(1 \mathrm{H}, \mathrm{m}$, $\left.2^{\prime}-\mathrm{H}\right), 3.16\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 4.1,1^{\prime}-\mathrm{H}\right), 3.77(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.4$ and 6.8 , 4H), $4.22(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and $5.97(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}) ; \delta_{\mathrm{c}}(100.57$

M Hz $)-5.0,-4.3\left[2 \times\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e}_{2} \mathrm{Si}\right], 17.90\left[\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e} \mathrm{e}_{2} \mathrm{Si}\right]$, 19.9 (C-5'), 21.1 (C-4'), 22.6 (C-6), 23.3 (C-6'), 25.7 [(M e ${ }_{3} \mathrm{C}$)$\left.\mathrm{M} \mathrm{e}_{2} \mathrm{Si}\right], 38.9$ (C-3'), 51.8 (C-1'), 53.2 (C-2'), 53.3 (C-4), 62.4 (C3), 65.3 (C-5) and 168.5 (C-2); m/z 326 ($\mathrm{M} \mathrm{H}^{+}, 33$), 310 (10), 268 (72) and 126 (100).

Compound $\mathbf{4 b}$: white solid; $\mathrm{mp} 96-98^{\circ} \mathrm{C}$; $[a]-20$ (c 0.59) (Found: C, 62.63; H, 9.64; N, 4.31. $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{~N} \mathrm{O}_{3} \mathrm{Si}$ requires C , $62.71 ; \mathrm{H}, 9.62 ; \mathrm{N}, 4.30 \%)$; $v_{\text {max }} / \mathrm{cm}^{-1} 3414 \mathrm{~s}$ and $1757 \mathrm{vs} ; \delta_{\mathrm{H}} 0.08$ [$3 \mathrm{H}, \mathrm{s},\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right.$)M $\left.\mathrm{e}_{2} \mathrm{Si}\right], 0.09$ [$\left.3 \mathrm{H}, \mathrm{s},\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e} \mathrm{e}_{2} \mathrm{Si}\right], 0.88$ [$9 \mathrm{H}, \mathrm{s}$, ($\mathrm{M} \mathrm{e}_{3} \mathrm{C}$) $\mathrm{M} \mathrm{e}_{2} \mathrm{Si}$], 0.90 ($1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{ax}}$), 1.27 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5,5-\mathrm{M} \mathrm{e}$), $1.43\left(2 \mathrm{H}, \mathrm{m}, 2 \times 5^{\prime}-\mathrm{H}\right), 1.62\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\text {eq }}\right), 1.69(1 \mathrm{H}, \mathrm{m}$, $6^{\prime}-\mathrm{H}_{\text {ax }}$), $1.99\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 2.10\left(1 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{\text {eq }}\right), 2.93(1 \mathrm{H}$, dd, J 2.2 and $6.4,3-\mathrm{H}), 3.08\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 3.16\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right)$, $3.55(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.2$ and $8.4,4-\mathrm{H}), 4.13(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and 6.00 $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}}(100.57 \mathrm{M} \mathrm{Hz})-5.10,-4.64\left[2 \times\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right)-\right.$ $\left.\mathrm{M} \mathrm{e}_{2} \mathrm{Si}\right], 16.73$ (C-5'), 17.72 [($\left.\left.\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e}_{2} \mathrm{Si}\right], 22.84$ (C-6), 24.50 (C-6'), 24.61 (C-4'), 25.62 [(M e e^{C}) M é $\mathrm{S}_{2} \mathrm{Si}$], 38.49 (C-3'), 52.16 (C-2'), 52.58 (C-1'), 54.15 (C-4), 62.90 (C-3), 66.0 (C-5) and 168.12 (C-2); m/z 326 ($\mathrm{M} \mathrm{H}^{+}, 28 \%$), 268 (61) and 126 (100).

(3S,4R)-3-[(1R)-1-(tert-B utyldimethylsilyloxy)ethyl]-4-

 [(1^{\prime} R , $2^{\prime} S, 3^{\prime}$ ' $)$-1' $\mathbf{2}^{\prime}$ '-epoxycyclohexan-3'-yl]azetidin-2-one 4c and ($35,4 \mathrm{R}$)-3-[(1R)-1-(tert-butyIdimethylsilyloxy)ethyl]-4[(1'S, 2'R, $3^{\prime} S$)-1' $\mathbf{1}^{\prime} \mathbf{2}^{\prime}$-epoxycyclohexan-3'-yl]azetidin-2-one 4d Following the same procedure as described for the synthesis of $\mathbf{4 a}$ and $\mathbf{4 b}$, from $\mathbf{7 b}(1.44 \mathrm{~g}, 4.62 \mathrm{mmol})$ was obtained $\mathbf{4 c}(0.28 \mathrm{~g})$ eluting with a 1:1 mixture of diethyl ether and light petroleum and $\mathbf{4 b}(1.13 \mathrm{~g})$ by continuing the elution with an $8: 2$ mixture of the same solvents (ratio $\mathbf{4 c}: 4 \mathrm{~d}=20: 80$, total yield 90%).Compound 4c: mp 129-131 ${ }^{\circ} \mathrm{C} ;[\mathrm{a}]+3.90$ (c 0.64) (Found: C, 62.40; H, 9.70; N, 4.20. $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{~N} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{C}, 62.71 ; \mathrm{H}, 9.62$; $\mathrm{N}, 4.30 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 3414 \mathrm{~s}$ and 1757vs; $\delta_{\mathrm{H}} 0.07[3 \mathrm{H}, \mathrm{s}$, $\left.\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e}_{2} \mathrm{Si}\right], 0.08\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e}_{2} \mathrm{Si}\right], 0.87[9 \mathrm{H}, \mathrm{s}$, $\left.\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e}_{2} \mathrm{Si}\right], 0.91\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\text {ax }}\right), 1.20\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\text {eq }}\right)$, $1.22(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.0,5-\mathrm{Me}), 1.38\left(1 \mathrm{H}, \mathrm{m}, 2 \times 5^{\prime}-\mathrm{H}\right), 1.68(1 \mathrm{H}, \mathrm{m}$, $\left.6^{\prime}-\mathrm{H}_{\text {ax }}\right), 1.99\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 2.10\left(1 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{\text {eq }}\right), 2.88(1 \mathrm{H}$, dd, J 2.0 and $5.5,3-\mathrm{H}), 2.91\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 3.20\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right)$, $3.62(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.0$ and $8.3,4-\mathrm{H}), 4.21(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and 6.18 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$); $\delta_{\mathrm{c}}(100.57 \mathrm{MHz})-4.85,-4.29\left[2 \times\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right)-\right.$ M e ${ }_{2} \mathrm{Si}$], 17.10 (C-5'), 17.94 [($\mathrm{M} \mathrm{e}_{3} \mathrm{C}$)M $\mathrm{e}_{2} \mathrm{Si}$], 22.86 (C-6), 24.51 (C-4'), 24.83 (C-6'), 25.75 [($\mathrm{M} \mathrm{e}_{3} \mathrm{C}$)M $\left.\mathrm{e}_{2} \mathrm{Si}\right]$, 38.95 (C-3'), 52.58 (C-1'), 52.84 (C-2'), 53.15 (C-4), 62.94 (C-3), $65.30(\mathrm{C}-5)$ and 168.55 (C-2); m/z 326 ($\mathrm{M} \mathrm{H}^{+}, 33 \%$), 310 (10), 268 (76) and 126 (100).

Compound 4d: mp 76-78 ${ }^{\circ} \mathrm{C}$; $[a]+18.7$ (c 0.71) (Found: C , 63.11; 9.63; $\mathrm{N}, 4.35 . \mathrm{C}_{17} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{Si}$ requires $\mathrm{C}, 62.71 ; \mathrm{H}, 9.62 ; \mathrm{N}$, $4.30 \%)$; $v_{\text {max }} / \mathrm{cm}^{-1} 3414 \mathrm{~s}$ and $1757 \mathrm{vs} ; \delta_{\mathrm{H}} 0.04\left[6 \mathrm{H}, \mathrm{s},\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right)\right.$ $\left.\mathrm{M} \mathrm{e}_{2} \mathrm{Si}\right], 0.86\left[9 \mathrm{H}, \mathrm{s},\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e} \mathrm{e}_{2} \mathrm{Si}\right.$], 1.22 (3 H, d, J 6.5, 5-M e), $1.25\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{ax}}\right)$, $1.26\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 1.34\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\right.$ $\left.\mathrm{H}_{\text {eq }}\right), 1.51\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\text {eq }}\right), 1.85\left(2 \mathrm{H}, \mathrm{m}, 2 \times 6^{\prime}-\mathrm{H}\right), 1.88(1 \mathrm{H}$, m, 3'-H), $2.80(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.12\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right.$), $3.21(1 \mathrm{H}$, $\left.\mathrm{m}, 1^{\prime}-\mathrm{H}\right), 3.63(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.2$ and $9.2,4-\mathrm{H}), 4.16(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and $6.51(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$; $\delta_{\mathrm{c}}(100.57 \mathrm{MHz})-4.83,-4.33[2 \times$ ($\mathrm{M} \mathrm{e}_{3} \mathrm{C}$) $\mathrm{M} \mathrm{e}_{2} \mathrm{Si}$], 17.91 [($\mathrm{M} \mathrm{e}_{3} \mathrm{C}$) $\left.\mathrm{M} \mathrm{e}_{2} \mathrm{Si}\right], 19.17$ (C-5'), 21.73 (C-4'), 22.78 (C-6), 23.38 (C-6'), 25.75 [($\left.\left.\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e}_{2} \mathrm{Si}\right]$, 39.77 (C-3'), 52.59 (C-1'), 52.71 (C-2'), 52.75 (C-4), 63.72 (C-3), 65.49 (C-5) and $168.91(\mathrm{C}-2) ; \mathrm{m} / \mathrm{z} 326\left(\mathrm{M} \mathrm{H}^{+}, 15 \%\right), 310(7), 268$ (61) and 126 (100).

(3S,4R)-3-[(1R)-1-(tert-B utyldimethyIsilyloxy)ethyl]-4[(1'S, $2^{\prime} S, 3^{\prime} R$)-(1'-methoxy-2'-hydroxycyclohex an- 3^{\prime}-yl] azetidin-2-one 5b

To a solution of $4 \mathrm{a}(0.1 \mathrm{~g}, 0.3 \mathrm{mmol})$ in methanol (10 ml) was added at $0^{\circ} \mathrm{C}$ toluene-p-sulfonic acid monohydrate ($0.01 \mathrm{~g}, 0.05$ $\mathrm{mmol})$. The solution was warmed to room temperature and stirred for 2 h , after which it was diluted with diethyl ether (60 ml), washed with 5% aqueous NaHCO_{3} and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The product was purified by flash chromatography eluting with an 8:2 mixture of diethyl ether and light petroleum to afford $\mathbf{5 b}$ as a white foam $(0.07 \mathrm{~g}$,

65\%); [a]-4.6 (c 0.54) (Found: C, 60.14; H, 10.00; N, 3.90. $\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{Si}$ requires $\mathrm{C}, 60.45 ; \mathrm{H} ; 9.88 ; \mathrm{N}, 3.92 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ 3418s and 1753s; $\delta_{\mathrm{H}} 0.10\left[6 \mathrm{H}, \mathrm{s},\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e} \mathrm{e}_{2} \mathrm{Si}\right], 0.90[9 \mathrm{H}, \mathrm{s}$, ($\mathrm{M} \mathrm{e}_{3} \mathrm{C}$) $\mathrm{M} \mathrm{e}_{2} \mathrm{Si}$], 1.29 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.0,5-\mathrm{M} \mathrm{e}$), 1.45 ($1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{ax}}$), $1.52\left(2 \mathrm{H}, \mathrm{m}, 2 \times 5^{\prime}-\mathrm{H}\right), 1.66\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{eq}}\right.$ and $\left.6^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 1.74$ ($1 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{\text {eq }}$), $1.85\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 2.96(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.5$ and $6.0,3-\mathrm{H}), 3.34\left(1 \mathrm{H}, \mathrm{m}, \mathrm{l}^{\prime}-\mathrm{H}\right), 3.35(3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), $3.66(1 \mathrm{H}$, dd, J 2.25 and $7.04,4-\mathrm{H}), 3.89\left(1 \mathrm{H}, \mathrm{m}, \mathrm{2}^{\prime}-\mathrm{H}\right), 4.20(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and $5.83(1 \mathrm{H}, \operatorname{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}}(100.57 \mathrm{MHz})-4.53,-4.23$ [$\left.2 \times\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e}_{2} \mathrm{Si}\right], 18.09$ [($\left.\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e} \mathrm{e}_{2} \mathrm{Si}$], 19.04 (C-5'), 21.73 (C-4'), 22.83 (C-6), 23.74 (C-6'), 25.82 [(M e e^{C})M $\mathrm{e}_{2} \mathrm{Si}$], 40.11 (C-3'), 53.71 (C-4), 56.33 (OM e), 61.91 (C-3), 66.45 (C-5), 70.01 (C-1'), 79.05 (C-2') and 168.52 (C-2); m/z 358 ($\mathrm{M} \mathrm{H}^{+}, 51 \%$), 300 (91) and 158 (100).
(3S,4R)-1-tert-B utyldimethylsilyl-3-[(1R)-1-(tert-butyldimethyl-silyloxy)ethyl]-4-[(3'S)-cyclohexan-3'-yl]azetidin-2-one 10a
To a solution of $7 \mathrm{a}(0.5 \mathrm{~g}, 1.62 \mathrm{mmol})$ in DMF (3 ml) were added triethylamine ($0.21 \mathrm{ml}, 2.1 \mathrm{mmol}$) and tert-butyldimethylchlorosilane ($0.29 \mathrm{~g}, 1.95 \mathrm{mmol}$). The resulting reaction mixture was stirred for 4 h and then diluted with diethyl ether, washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The product was purified by flash chromatography eluting with a 9:1 mixture of hexane and ethyl acetate to afford 10a (0.46 g , 65%) as a white solid; $v_{\text {max }} / \mathrm{cm}^{-1} 1732 \mathrm{vs} ; \delta_{\mathrm{H}} 0.06\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{M} \mathrm{e} \mathrm{e}_{3} \mathrm{C}\right)\right.$ $\left.\mathrm{M} \mathrm{e}_{2} \mathrm{Si}\right], 0.07\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e} \mathrm{e}_{2} \mathrm{Si}\right], 0.20\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e} \mathrm{e}_{2} \mathrm{Si}\right]$, 0.26 [3 H, s, ($\left.\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e} \mathrm{e}_{2} \mathrm{Si}$], 0.88 [$9 \mathrm{H}, \mathrm{s},\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e} \mathrm{e}_{2} \mathrm{Si}$], 0.96 [$\left.9 \mathrm{H}, \mathrm{s},\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e}_{2} \mathrm{Si}\right], 1.22(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3,5-\mathrm{Me}), 1.22(1 \mathrm{H}$, $\mathrm{m}), 1.5(1 \mathrm{H}, \mathrm{m}), 1.8(2 \mathrm{H}, \mathrm{m}), 2.00(2 \mathrm{H}, \mathrm{m}), 2.5(1 \mathrm{H}, \mathrm{m})$, $2.79(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.4$ and $2.6,3-\mathrm{H})$, $3.51(1 \mathrm{H}, \mathrm{dd}$, J 2.7 and 2.4, 4-H) , $4.02(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.7(1 \mathrm{H}, \mathrm{m})$ and $5.83(1 \mathrm{H}, \mathrm{m})$.
(3S,4R)-1-tert-B utyldimethylsilyl-3-[(1R)-1-(tert-butyldimethylsilylox y)ethyl]-4-[(1'R , $\left.2^{\prime} S, 3^{\prime} R\right)-1^{\prime}, 2^{\prime}$-epox ycyclohexan3 '-ylJazetidin-2-one 11a and (3S,4R)-1-tert-butyldimethyIsilyl-3[(1R)-1-(tert-butyldimethylsilyloxy)ethyl]-4-[(1'S, 2'R, $3^{\prime} R$)-1',2'-epoxycyclohex an-3'-yl Jazetidin-2-one 11b
To a solution of $10 \mathrm{a}(0.42 \mathrm{~g}, 1.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was added dropwise at $0^{\circ} \mathrm{C}$ a solution of 3 -chloroperoxybenzoic acid (assay 55%; $0.37 \mathrm{~g}, 0.97 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 ml). The solution was warmed to room temperature and stirred for 3 h , after which it was washed with 10% aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}, 5 \%$ aqueous NaHCO_{3} and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The product was purified by flash chromatography eluting with a 95:5 mixture of hexane and ethyl acetate to afford 11a (0.015 g) and $11 \mathrm{~b}(0.25 \mathrm{~g})$ (ratio 11b: 11a $=94: 6$, total yield 60%).

Compound 11a: colourless oil; $\delta_{\mathrm{H}} 0.07$ [$\left.3 \mathrm{H}, \mathrm{s},\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e}_{2} \mathrm{Si}\right]$, 0.08 [$3 \mathrm{H}, \mathrm{s},\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right.$)M $\left.\mathrm{e}_{2} \mathrm{Si}\right], 0.17$ [3 H, s, ($\mathrm{M} \mathrm{e}_{3} \mathrm{C}$)M $\left.\mathrm{e}_{2} \mathrm{Si}\right], 0.29$ [3 $\left.\mathrm{H}, \mathrm{s},\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e}_{2} \mathrm{Si}\right], 0.86$ [$\left.9 \mathrm{H}, \mathrm{s},\left(\mathrm{M} \mathrm{e} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e}_{2} \mathrm{Si}\right], 0.96$ [$9 \mathrm{H}, \mathrm{s}$, ($\mathrm{M} \mathrm{e}_{3} \mathrm{C}$) $\mathrm{M} \mathrm{e}_{2} \mathrm{Si}$], $0.96(1 \mathrm{H}, \mathrm{m}), 1.28(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.2,5-\mathrm{Me}$), 1.72$1.2(4 \mathrm{H}, \mathrm{m}), 2.11(1 \mathrm{H}, \mathrm{m}), 2.23(1 \mathrm{H}, \mathrm{m}), 2.88(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.1$ and 8.4, 3-H), 3.02($1 \mathrm{H}, \mathrm{m}$), $3.14(1 \mathrm{H}, \mathrm{m}), 3.74(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.1$ and $4.8,4-\mathrm{H})$ and $4.02(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$.

Compound 11b: colourless oil; $\delta_{\mathrm{H}} 0.06\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e} \mathrm{e}_{2} \mathrm{Si}\right]$, $0.09\left[3 \mathrm{H}, \mathrm{s},\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e} \mathrm{e}_{2} \mathrm{Si}\right], 0.27$ [$\left.3 \mathrm{H}, \mathrm{s},\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e} \mathrm{e}_{2} \mathrm{Si}\right], 0.30[3$ $\left.\mathrm{H}, \mathrm{s},\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e} \mathrm{e}_{2} \mathrm{Si}\right], 0.88$ [$\left.9 \mathrm{H}, \mathrm{s},\left(\mathrm{M} \mathrm{e}_{3} \mathrm{C}\right) \mathrm{M} \mathrm{e} \mathrm{e}_{2} \mathrm{Si}\right], 0.95[9 \mathrm{H}, \mathrm{s}$, ($\mathrm{M} \mathrm{e}_{3} \mathrm{C}$) M e $\mathrm{e}_{2} \mathrm{Si}$, $1.27(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.25,5-\mathrm{Me}$), $1.45(3 \mathrm{H}, \mathrm{m})$, 1.69 $(2 \mathrm{H}, \mathrm{m}), 2.22-2.08(2 \mathrm{H}, \mathrm{m}), 2.80(\mathrm{dd}, \mathrm{J} 7.0$ and $2.5,3-\mathrm{H}), 3.12$ $(1 \mathrm{H}, \mathrm{m}), 3.20(1 \mathrm{H}, \mathrm{m}), 3.56(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 2.5$ and $3.0,4-\mathrm{H})$ and 4.04 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$).

(3S,4R)-3-[(1R)-1-(tert-B utyldimethylsilyloxy)ethyl]-4-

 [(1'S, $2^{\prime} R, 3^{\prime} R$)-1', 2^{\prime}-epox ycyclohexan-3'-yl]azetidin-2-one 4b To a solution of $11 \mathrm{~b}(0.145 \mathrm{~g}, 0.28 \mathrm{mmol})$ in methanol (2 ml) was added at $0^{\circ} \mathrm{C}$ potassium fluoride ($0.05 \mathrm{~g}, 0.86 \mathrm{mmol}$). The solution was warmed to room temperature and stirred for 15 min, after which it was diluted with diethyl ether, washed with saturated $\mathrm{NH}_{4} \mathrm{OH}$ and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to give 4b ($0.092 \mathrm{~g}, 100 \%$).
A cknowledgements

The authors gratefully thank Dr Tino Rossi for useful discussions, M rs M aria Passarini for the IR spectra, Dr M ahmoud Hamdan for the M S data, M r F rancesco Siliotto for the optical rotations and Mr M assimo Pasquato for the elemental analyses.

R eferences

1 (a) O. A. M ascaretti, C. E. Boschetti, G. O. D anelon, E. G. M ata and O. A. Roveri, Curr. M ed. Chem., 1995, 441; (b) R. Southgate and N. F. Osborne, in Chemotherapeutics and Disease Control, ed. M ary H owe-G rant, Wiley, N ew York, 1993, pp. 232-258; (c) J. Roberts, ref. 1(b), pp. 259-313; K. R. Lindner, D. P. Bonner and W. H. K oster, ref. 1(b), pp. 338-360; (d) R. J. Ponsford, ref 1(b), pp. 360-389.
2 (a) R. Wise, A ntimicrob. Newsl., 1990, 7, 73; (b) G. Franceschi, E. Perrone, M. Alpegiani, A. Bedeschi, C. Della Bruna and F. Zarini, in Recent Advances in the Chemistry of β-Lactam Antibiotics, eds., P. H. Bentley and R. Southgate, RSC, London, 1989, pp. 222-246; (c) G. Pentassuglia, G. Tarzia, D. A ndreotti, C. Bismara, R. Carlesso, D. D onati, G. Gaviraghi, A. Perboni, A. Pezzoli, T. Rossi, B. Tamburini and A . U rsini, J. A ntibiot., 1995, 48, 399; (d) T. N. Salzmann, F. P. DiNinno, M. L. Greenlee, R. N. Guthikonda, M. L. Quesada, S. M. Schmitt, J. J. H errmann and M . F. Woods, in Recent Advances in the C hemistry of β-L actam A ntibiotics, ed. P. H. Bentley and R. Southgate, The Royal Society of Chemistry, London, 1989, pp. 171-189; (e) R. D. G. Cooper, in The Chemistry of β-Lactams, ed. M. I. Page, Chapman and H all, 1992, p. 272; (f)E.W. Colvin, in The C hemistry of β-L actams, ed. M. I. Page, 1992, pp. 325-347; (g) C. E. N ewall, Spec. Publ.-R. Soc. Chem., 1989, 70 (Recent Adv. Chem. β-L actam A ntibiot.), 365-380; (h) J. H. C. N ayler, Trends Biochem. Sci., 1991, 16, 234; (i) J. E. Baldwin and E. A braham, N at. Prod. Rep., 1988, 5, 129; (I) R. H erranz, Farm. Clin., 1986, 3, 548; (m) D. P. Bonner and R. B. Sykes, M ed. M icrobiol., 1984, 171; (n) T. Okonogi, S. Shibahara, Y. M urai, S. Inouye, S. K ondo and B. G. Christensen, H eterocycles, 1990, 31, 797.
3 (a) B. Tamburini, A . Perboni, T. Rossi, D. D onati, D. A ndreotti, G. Gaviraghi, R. Carlesso and C. Bismara, EP 0416953 A 2/1991 (Chem. A bstr., 1992, 116, 235337t); (b) A. Perboni, T. Rossi, G. Gaviraghi, A. Ursini and G. Tarzia, WO 9203437/1992 (Chem. A bstr., 1992, 117, 7735m); (c) A. Perboni, B. Tamburini, T. Rossi, D. Donati, G. Tarzia and G. Gaviraghi, in Recent Advances in the Chemistry of Anti-Infective Agents, ed. P. H. Bentley and R. Ponsford, The Royal Society of Chemistry, Cambridge, 1992, pp. 21-35.
4 E. Di M odugno, I. Erbetti, L. Ferrari, G. L. Galassi, S. M. Hammond and L. X erri, A ntimicrob. A gents C hemother., 1994, 38, 2362.

5 I. Yuji and H. K oichi, Bull. Chem. Soc. J pn., 1986, 59, 1363.
6 (3R , 4R , 1'R)-(+)-4-A cetoxy-3-[1'-(tert-butyldimethylsilyloxy)ethyl-azetidin-2-one $\mathbf{6 a}$ is commercially available from the Aldrich Chemical Company Inc., M ilwaukee, WI.
7 (a) A. Perboni and C. Bismara, unpublished results; (b) C. Bismara, R. Di Fabio, D. Donati, T. Rossi and R. J. Thomas, Tetrahedron Lett., 1995, 36, 4283.
8 (a) R. H. Shapiro, Org. React., 1976, 23, 405; (b) P. A. Grieco and M . N ishizawa, J. Org. C hem., 1977, 42, 1717.
9 W. R. Roush, J. A . Straub and R . J. Brown, J. Org. Chem., 1987, 52, 5127.

10 P. K ocovský and I. Starý, J. Org. C hem., 1990, 55, 3236.
11 M. D. Threadgill and P. Webb, J. Chem. Soc., Chem. Commun., 1991, 269.
12 (a) G. Pentassuglia, A . Perboni, G. L. A raldi, D. D onati, A . U rsini, G. Tarzia, A. Pezzoli, R. Carlesso, E. De Magistris and G. Gaviraghi, Proceedings of the 1st Int. Symposium: Recent Advances in the Chemistry of Anti-Infective A gents, Cambridge, 1992, p. 14; (b) M. E. Tranquillini, G. L. A raldi, D. D onati, G. Pentassuglia, A . Pezzoli and A. U rsini, Bioorg. M ed. Chem. Lett., 1996, 6, 1683.
13 F. A. Bouffard and B. G. Christensen, J. Org. C hem., 1981, 46, 2208. 14 W. C. Still, M. K ahn and A. M itra, J. Org. Chem., 1978, 43, 2923.
15 T. Rossi, S. Biondi, S. Contini, R . J. Thomas and C. M archioro, J. A m. Chem. Soc., 1995, 117, 9604.

Paper 6/05081F
Received 22nd J uly 1996
A ccepted 30th September 1996

[^0]: \dagger 2a: $\delta_{\mathrm{H}} 1.25\left(3 \mathrm{H}, \mathrm{d}, 11-\mathrm{Me}\right.$), $1.35\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{ax}}\right), 1.84(2 \mathrm{H}, \mathrm{m}, 2 \times 6-$ H), $1.92(2 \mathrm{H}, \mathrm{m}, 2 \times 5-\mathrm{H}), 1.96\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\text {eq }}\right), 2.05\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{ax}}\right)$, $2.86(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 3.15(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.0$ and $6.5,10-\mathrm{H}), 3.45(1 \mathrm{H}, \mathrm{m}, 4-$ $\left.\mathrm{H}_{\text {eq }}\right), 4.15(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.0$ and $10.0,9-\mathrm{H}), 4.20(1 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}), 4.70(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$ and $5.95(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$). 2b: $\delta_{\mathrm{H}} 1.25\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{ax}}\right), 1.33(3 \mathrm{H}, \mathrm{d}, 11-\mathrm{M} \mathrm{e}$), 1.70 (1 $\mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 1.75\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{ax}}\right), 1.85(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.10(1 \mathrm{H}, \mathrm{m}, 5-$ $H_{\text {eq }}$), $1.96\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\text {eq }}\right), 2.35\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\text {ax }}\right), 2.89(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 3.13$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.8$ and $7.6,10-\mathrm{H}$), $3.44\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\text {eq }}\right), 3.71(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.8$ and 6.6, $9-\mathrm{H}), 4.20(1 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}), 4.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.33(2$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$ and $5.95\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$.

